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Nowadays, reverse osmosis (RO) is the most largely utilized desalination 
process at the World level. During the three last decades, amazing progress 
has been realized in the manufacturing of RO membranes using different 
materials. However, what is astonishing here is the fact that a new research 
field was open in a relatively short time with hundreds of scientific 
publications and patents which are made on membrane post-synthesis 
modifications in order to improve the structural properties and desalination 
performance opening a large debate about the membrane fabrication 
techniques and membranes capacities to deal with various water pollutants. 
This review aims to discuss this extra technological field dedicated to 
membranes modifications following their fabrication. As conclusions, 
membrane fabrication methods are a well-established and developed 
technology which however needs more technical improvements to overcome 
the needs of a post-synthesis industry and satisfy quantitatively and 
qualitatively the water guidelines. On the other hand, the large chemical 
products use in both membranes synthesis and post-synthesis should be 
avoided or at least reduced, since monomers, alcohols, acids and bases risk to 
be realized into drinking water. That is said because RO process has been 
presented hopefully as a promising powerful and green technology instead of 
chlorination and coagulation/flocculation which are proven highly polluting 
with their toxic metal salts injection and poisonous disinfection by-products 
formation. 
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1. Introduction 

*The shortage of access to drinking water and 
wastewater purification is a crucial origin of health 
problems and a barrier to potential development for 
a great portion of the worldwide inhabitance (Lee et 
al., 2011; Fry et al., 2008; Montgomery and 
Elimelech, 2007). Several growing states are 
undertaking fast manufacturing in the absence of 
convenient wastewater disposal frameworks, and 
are now knowing augmenting water pollution 
problems while yet fighting with bad water feeding 
and purification issues (WHO, 1997). Following the 
World Health Organization, there are more than 2.5 
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billion human beings (~40% of the World’s 
inhabitance) that do not possess approach to sewer 
purification frameworks (UNICEF, 2008). 
Simultaneously, potential supply of proper water 
supplies is crucial to all states regardless of their 
dimension. The turn to biofuels will increase more 
important requests for water (Shannon et al., 2008). 
In several situations, born water provisions are 
reducing as a consequence of weather variation and 
unlimited usage, and resolutions such as water 
conservation and water transport, or construction of 
new dams, are not enough to satisfy the growing 
request. Consequently, the most demanding 
provocations nowadays comprise the recuperation 
of proper potable water from salty or seawater, by 
widely the most plentiful worldwide water resource, 
and the treatment and recycle of wastewater. 
Desalination, as an applied science that transforms 
saline water into clean water, gives one of the most 
vital resolutions to these issues (Gleick, 2009). 
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Nowadays, reverse osmosis (RO) is the most largely 
utilized desalination process at the World level. 
During the three last decades, astonishing progress 
has been realized in the manufacturing of RO 
membranes using different materials. 

However, what deserves to be noted here is the 
fact that a new extra research field was surprisingly 
open in a relatively short time after RO discovery 
and industrial applications with a huge number of 
scientific publications and patents which are made 
on membrane post-synthesis modifications aiming to 
improve the RO membranes’ structural properties 
and desalination performance. The membrane post-
synthesis modifications field development imposes 
an opening of a large debate about the membrane 
fabrication techniques and membranes capacities to 
deal with various water pollutants. This review aims 
to discuss this extra technological field dedicated to 
membranes modifications following their 
fabrication. 

2. Actual up-to-the-minute RO applied science 

RO is nowadays the most significant desalination 
applied science. It has surpassed classical thermal 
applied science such as multi-stage flash (El-
Dessouky et al., 1995) and is predictable to preserve 
its control in the next decades, despite the fact that 
modern techniques such as membrane distillation 
(Hsu et al., 2002), electrodialysis (Sadrzadeh and 
Mohammadi, 2008), capacitive deionization (Porada 
et al., 2013) and forward osmosis (McGinnis and 
Elimelech, 2007) have been suggested. 

Trade attention in RO technique is growing 
worldwide because of constant process 
enhancements, which successively conduct to 
important cost lowering. These improvements 
comprise growths in membrane materials and 
module conception, process conception, feed pre-
treatment, and energy recuperation, or decrease in 
energy utilization. The improved mechanical, 
biological and chemical hardness of RO membranes, 
as well as the increased permeability, have 
decreased the membrane cost per unit volume of 
water treated by more than 10 times since 1978. The 
joined endeavor to reducing fouling and 
concentration polarization (Xie et al., 2014), and 
make as great as possible permeate flux and energy 
recuperation, has reduced the energy consumption 
from 12 kWh/m3 in the 1970s to less than 2 kWh/m3 
in 2006 (Lee et al., 2011). 

However, the most important performance 
advantages have emerged from the enhancement of 
the membranes. The structure, material, and 
morphology of RO membranes have been changed to 
ameliorate permeability, selectivity, and applicability 
(mechanical, chemical and biological stability). The 
actual RO membrane market is controlled by thin 
film composite (TFC) polyamide membranes 
composing of three films: A polyester grid working 
as structural support (120–150 μm thick), a 
microporous interfilm (about 40 μm), and an ultra-
thin barrier film on the upper surface (0.2 μm) 

(Petersen and Cadotte, 1990). The polyester support 
grid has not the capacity to give direct support for 
the barrier film as it is too asymmetrical and porous. 
Consequently, enter the barrier film and the support 
film, a micro-porous interlayer of polysulfonic 
polymer is joined to allow the ultra-thin barrier film 
to resist elevated pressure compression. The 
thickness of the barrier film is decreased to diminish 
opposition to the permeate diffusion. Membrane 
pore size is usually less than 0.6 nm to obtain salt 
refusal systematically greater than 99%. The 
selective barrier film is most frequently produced of 
aromatic polyamide, for example via interfacial 
polymerization of 1,3-phenylenediamine (also 
known as 1,3-benzenediamine) and the tri-acid 
chloride of benzene (trimesoyl chloride) (Cadotte, 
1977). With enhanced chemical resistance and 
structural robustness, it provides acceptable 
allowance to pollutions, improved durability and 
simple cleaning properties (Lee et al., 2011; Liu et al., 
2014). 

The spiral wound membrane module 
configuration is the most largely employed 
conception in RO desalination. This configuration 
provides elevated specific membrane surface area, 
easy scale up operation, inter-changeability, low 
replacement costs and, most importantly, it is the 
least expensive module configuration to 
manufacture from flat sheet TFC membrane (Pearce, 
2007; Polasek et al., 2003). In spite of the fact that 
the spiral wound configuration was presented 
decades ago, enhancements in the dimensions of 
spacers, feed channels and vessels, as well as the 
materials of construction, have optimized the inter-
connection enter module design and fluidic 
transport properties, that way reducing both fouling 
and pressure losses (Lee et al., 2011). 

3. Membrane post-synthesis modifications  

After the radical triumph of the submitting of 
crosslinked fully aromatic polyamide TFC RO 
membranes into the market, research and 
development across novel polymeric materials for 
RO membranes has reduced greatly. Actual products 
from important producers of RO desalination 
membranes are yet founded on the primary 
chemistry found through the 1980s, i.e. interfacial 
polymerization of monomeric aromatic amines. The 
gigantic producers of desalination membranes: 
DOWFILMTECTM presently sells products founded on 
FT-30; membranes supplied by Toray are founded 
on UTC-70; Hydranautics membranes are founded 
on NCM1, which is identical to CPA2; and Trisep 
membranes are founded on X-20. But then, 
asymmetric membrane products are yet founded on 
the classical cellulose acetate materials; as an 
example, the Toyobo HollosepTM interval of products 
is founded on cellulose triacetate and is the major 
asymmetric RO membrane (Lee et al., 2011; Saeki et 
al., 2014a;b; Dong et al., 2015). 

Regardless of the fact that no novel polymeric 
membranes has been presented in the marked lately 
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(Lee et al., 2011), the efficiency of RO membranes 
has yet enhanced enormously, i.e. water 
permeability has been at least doubled, and the 
recuperation of fresh water may be more than 60%. 
These enhancements are the fruits of surface 
modification, and direct controlling of interfacial 
polymerization reaction parameters, as well as more 
efficient conception of the module composition 
(Uemura and Henmi, 2008; Antrim et al., 2005; 
Bartels et al., 2008; Zirehpour et al., 2017). 
Moreover, better comprehension of the membrane 
composition, connected with progress in membrane 
description methods, has certainly had a significant 
contribution (Matsuura, 2001). As an example, 
Atomic Force Microscopy has been a helpful 
instrument which has assured that surface 
roughness of a membrane may importantly 
ameliorate permeability, while at the identical 
moment fixing elevated salt refusal because of the 
augmentation in efficient membrane area (Hirose et 
al., 1996). 

It has been hard to follow post-1990 evolution of 
commercially significant RO membranes because of 
importantly decreased patenting action by 
membrane producers (Lee et al., 2011). To show the 
chemical structure and post-treatment that has been 
realized on commercial RO membranes, scientists 
have been joining the utilization of different 
analytical methods. Rutherford back scattering 
spectrometry is a strong instrument for elemental 
structure analysis at various films and 
physicochemical identification (Mi et al., 2006; 
Zhang et al., 2007;2017; Coronell et al., 2008;2010). 
An integration of different analytical methods, XPS, 
ATR-FTIR, TEM, and streaming potential 
measurement has also been utilized to obtain a 
better comprehension of both physical and chemical 
structure of the membrane and how it links to the 
membrane efficiency (Tang et al., 2007;2009a;b). 
Cahill et al. (2008) have reviewed the usage of 
different analytical methods for membrane 
identification. 

3.1. Surface modification 

An important field of membrane post-treatment 
research implicates hydrophilization, which may 
produce an augmentation in permeability and 
chlorine durability (Low et al., 2011; Vercellino et al., 
2013; Emadzadeh et al., 2015). In spite of the fact 
that there has been several successes in producing 
membranes utilizing monomer chemical products 
with combined hydrophilic groups (such as 
carboxylate) and removed amidic hydrogen, the 
monomer chemical products utilized are not easily 
obtainable and the synthesis technique is 
complicated (Kim et al., 2000; Li et al., 2008; Roh et 
al., 1998; Moon et al., 2004). Consequently, post-
remediation to change in a chemical manner the 
membrane surface characteristics is promoted, and 
different chemical and physical procedures have 
been conceived (Zhao et al., 2014). Different water 
soluble solvents, like acids and alcohols, have been 

employed to remedy the membrane area. 
Combinations of alcohol (ethanol and iso-propanol) 
and acid (hydrofluoric and hydrochloric acid) in 
water have also been utilized to ameliorate flux and 
refusal because of the fractional hydrolysis and skin 
change started by the alcohol and acid (Mukherjee et 
al., 1996; Anis et al., 2014). The existence of 
hydrogen bonding is pretended to promote influence 
among the acid and water, which gives more surface 
charge and finally ameliorates the hydrophilicity and 
water flux astonishingly. Mickols (1998) presented a 
patent about post-remediation of a membrane area 
with ammonia or alkyl compounds, especially 
ethylenediamene and ethanolamine, which obtained 
both improved flux and salt refusal (Lee et al., 2011; 
Kang and Cao, 2012). 

3.2. Optimization of polymerization reactions 

An additional domain of dense investigation is the 
optimization of interfacial polymerization reaction 
mechanisms, comprising kinetics, reactant diffusion 
coefficients, reaction time, solvent solubility, solution 
composition, nucleation rate, curing time, polymer 
molecular weight range, and properties of the micro-
porous support (Song et al., 2005; Karode et al., 
1998; Dhumal et al., 2008; Ghosh et al., 2008; Ghosh 
and Hoek, 2009). The premature triumph of 
Tomaschke (1990) and Chau et al. (1991) in utilizing 
added ingredients in the casting solution (amine 
reactants) has conducted to strong study in utilizing 
various types of added ingredients (Lee et al., 2011). 
The utilization of amine salts, like the triethylamine 
salt of camphorsulfonic acid, as an added ingredient 
in the aqueous amine reaction solution authorized 
post-reaction drying at temperatures bigger than 
100°C. Consequently, a more cross-linked membrane 
was produced with an enhancement of the salt 
refusal without affecting the flux. Chau et al. (1991) 
combined polar aprotic solvents, particularly N,N-
dimethylformamide, into the casting solutions which 
finally produced higher residues of carboxylate 
content and thus augmented the water permeability 
(Saeki et al., 2014 a;b; Dong et al., 2015) 

The embodiment of additives into the casting 
solution has a fundamental contribution in 
modification of monomer solubility, diffusivity, 
hydrolysis, protonation, and they can also take 
action to scavenge inhibitory reaction by-products 
(Ghosh et al., 2008). Many patents divulge that the 
introduction of alcohols, ethers, sulphur-containing 
compounds, water soluble polymers, or polyhydric 
alcohol to the amine solution may ameliorate 
membrane permeability without important variation 
in salt refusal (Koo and Kim, 2000; Hirose and Ikeda, 
1996; Koo and Yoon, 2000; Kwak et al., 2001). As an 
illustration, the miscibility of water and hexane has 
been enhanced by the introduction of dimethyl 
sulfoxide into the casting solution. Diffusion of the 
monomer amine reactants has been improved 
leading to the apparition of a thinner barrier film 
and ameliorated water flux (Kim et al., 2005; 
Ghernaout and El-Wakil, 2017).  
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4. Conclusion 

The RO membrane post-synthesis modifications 
field is widely expanded. This amazing phenomenon 
needs to open a large discussion in terms of both 
scientific and technological aspects about the 
membrane fabrication techniques and membranes 
capacities to deal with increasing quantitatively and 
qualitatively water pollutants. This review aimed to 
treat this extra technological field dedicated to 
membranes modifications following their 
fabrication. Whereas nanotechnology is conducting 
the road in the expansion of new RO membranes for 
desalination, there are several basic scientific and 
technical aspects that have to be classified before the 
likely interests can be achieved. An example 
objective is the production of single-pass RO utilizing 
multifunctional membranes, avoiding the demand 
for pre-treatment. At this level, these new techniques 
are yet too expensive for practical application, and 
therefore the development of new RO membranes 
with enhanced salt refusal and permeability at an 
acceptable cost is yet the major attention of RO 
desalination applied science. Post-synthesis 
membranes modification should be avoided once 
synthesis techniques will be well designed and 
optimized to satisfy the required potable water 
qualities. 
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